Abstract |
Data |
Nr/Describtion | Theorem | Input-File | Output-File | Proof (XML) |
---|---|---|---|---|
Lemma 4.3.1. | $a\cdot(b\cdot a)^\omega \leq (a\cdot b)^\omega$ |
lm431.in lm431ht.in 1 |
lm431.out lm431ht.out |
lm431.xml lm431ht.xml |
Lemma 4.3.2. | $a^\omega\cdot b\leq a^\omega$ |
lm432.in |
lm432.out |
lm432.xml |
Lemma 4.3.3. | $(a\cdot b)^\omega\leq (a+b)^\omega$ |
lm433.in |
lm433.out |
lm433.xml |
Lemma 4.3.4. | $(a^+)^\omega = a^\omega$ |
lm434.in |
lm434.out |
lm434.xml |
Equation (3) |
$p\cdot(p\cdot a)^\omega \leq (p\cdot a)^\omega$ $p\cdot(p\cdot a)^\omega \geq (p\cdot a)^\omega$ $(p\cdot a)^\omega \leq (p\cdot a\cdot p)^\omega$ $(p\cdot a)^\omega \geq (p\cdot a\cdot p)^\omega$ |
eq3i.in eq3ii.in eq3iii.in eq3iv.in |
eq3i.out eq3ii.out eq3iii.out eq3iv.out |
eq3i.xml eq3ii.xml eq3iii.xml eq3iv.xml |
Example 4.4./Lemma A.1. |
$(paqbrc)^\omega \leq p(paq+qbr+rcp)^\omega$ without the last step of isotony1,2
$(paqbrc)^\omega \leq p(paq+qap+qbr+rbq+rcp+pcr)^\omega$ 1,2 |
lmA1short.in lmA1.in |
lmA1short.out lmA1.out |
lmA1short.xml lmA1.xml |
Example 5.1. |
$(at_u\cdot a_5\cdot at_d\cdot a_{10}\cdot at_b\cdot a_{15})^\omega \leq (a_{30}\cdot at_u)^\omega$ $(at_u\cdot a_5\cdot at_d\cdot a_{10}\cdot at_b\cdot a_{15})^\omega \leq (a_{30}\cdot at_d)^\omega$ $(at_u\cdot a_5\cdot at_d\cdot a_{10}\cdot at_b\cdot a_{15})^\omega \leq (a_{30}\cdot at_b)^\omega$ |
ex51.in |
ex51.out |
ex51.xml |
Case Study II |
$F\cdot l_1\leq (l_1+l_2+i)^+$ |
cs2.in |
cs2.out |
cs2.xml |
©2008. Peter Höfner |